ENOLATE ALKYLATIONS WITH DIETHYLBUTADIENE PHOSPHONATE-I¹⁻³

Stephen D. Darling,* Florentina N. Muralidharan and V. B. Muralidharan Department of Chemistry, The University of Akron, Akron, Ohio 44325

Enolates of various cyclic ketones undergo Michael addition to 1-diethylphosphinyl-1,3-butadiene to yield ketophosphonates.

We would like to report the first successful Michael addition of ketone enolates to diethylbutadiene phosphonate 1.

The dienephosphonate $\underline{1}$ is known to undergo (i) nucleophilic addition at position 4,⁴ (ii) Diels-Alder reactions with itself as well as standard dienophiles.⁵ Recently cycloaddition of $\underline{1}$ with enamines was reported.⁶ To date, only very non-basic carbanions such as sodium malonate and sodioacetoacetate have been Michael-added to $\underline{1}$.⁴ Our observations indicate that the reactivity of $\underline{1}$, surprisingly, is quite different from that of the corresponding dienephosphonium salt.^{7,8}

We generated enolates of various ketones and subjected them to reaction with <u>1</u>. The results are summarized in the Table. The enolates were generated by: (i) the addition of the ketone to a solution of LDA (Method A), (ii) the treatment of the silyl enol ether⁹ of the ketone with benzyltrimethylammonium fluoride (Method B)¹⁰ and (iii) the treatment of the ketone with a suspension of potassium hydride in tetrahydrofuran. When the enolates were produced by Method A, excess ketone (1.1 to 4 equivalents) was used to ensure the formation of the thermodynamic enolate.

In all cases, the reaction went smoothly to afford ketophosphonates (Michael-adducts). No in-situ cyclization resulting in either Wadsworth-Emmonstype elimination¹¹ or dehydration¹² was observed. This could be partly due to the Michael-adduct <u>3</u> deprotonating itself intra- or intermolecularly giving rise to the more stable <u>4</u> which on work up afforded <u>5</u>. The deprotonation of <u>3</u> to give <u>4</u> would not occur if the acidic hydrogens (on the α -carbon to the carbonyl) are replaced by alkyl groups. Thus, the use of 2,2,6-trimethylcyclohexanone as the substrate should force the cyclization to occur. But, when the

reaction was carried out in one equivalent of LDA, most of the dienephosphonate <u>1</u> underwent polymerization. Only the ketone was recovered. On the other hand, the use of four equivalents of the ketone and one equivalent of LDA in the reaction gave 50% of the ketophosphonate. The intermediate <u>9</u> seems to prefer to deprotonate the excess ketone rather than undergo cyclization.

11

The reaction reported herein appears to be a general one and is of significance in view of the addition of four carbons provided with two functionalities (a double bond and a diethylphosphinyl group). These functional groups can be suitably manipulated or perhaps a cyclization induced to give important compounds. The compounds <u>12</u>, <u>13</u>, <u>14</u> and <u>16</u> thus might serve as useful sesquiterpene precursors.

Substrate	Procedure	Product ^g	Yield ^d %
2	Method A ^a		45
	Method B ^f	OP(OEt)	43
	Method A ^b		50
	Method B	$X \sim_{O} \sum_{OP(OEt)} \frac{15}{2}$	60
\sim	Method A ^C		54
=	Method C	$\frac{12}{OP(OEt)}$	38
, , , , , , , , , , , , , , , , , , ,	Method A ^C		58
I ····		OP(OEt) ₂	
A	Method A ^C		45
		OP (OEt) ₂	
	Method B		50
×			
\bigvee_{\circ}	Method B ^e		36
ス		OP (OEt)2	

a. Excess ketone (1.1 or 2 equivalents) was used; b. Four equivalents of ketone were added; c. Two equivalents of the ketone were added; d. Yields were not optimized and correspond to isolated yields; e. The kinetic enolate was trapped with Me₃SiCl;⁹ f. The thermodynamic enolate was trapped with Me₃SiCl;⁹ g. NMR, IR and the mass spectral data were consistent with the structures assigned. All the compounds except <u>14</u> and <u>16</u> were analyzed for C,H content.

These results encouraged us to investigate analogous reactions of enolates of aldehydes bearing only one alpha proton with the dienephosphonate $\underline{1}$, the results of which are summarized in the following communication.

<u>Method A</u>. The ketone was added to a THF solution of LDA at -70° C and after equilibration, the dienephosphonate <u>1</u> was introduced into the reaction mixture and the solution was stirred for 1-15 hours.

<u>Method B</u>. The silyl enol ether of the ketone⁹ was treated with one equivalent of benzyltrimethylammonium fluoride and one equivalent of the dienephosphonate <u>1</u> in THF-CH₂Cl₂ mixture and the solution was stirred overnight and refluxed for 48 hours.

<u>Method C</u>. A THF solution of one equivalent of the dienephosphonate $\underline{1}$ was added to a suspension of KH in THF and the solution was refluxed for 4 hours.

REFERENCES

- 1. The research was supported in part by the donors of the Petroleum Research Fund, administered by the American Chemical Society.
- Presented in part at the ACS 8th Central Regional Meeting, Akron, OH, May 1976.
- 3. Taken in part from the dissertation of V. B. Muralidharan submitted to The University of Akron, Akron, OH, 1978.
- 4. A. N. Pudovik, I. V. Konovalova, and E. A. Ishmaeva, <u>Zh. Obshch. Khim.</u>, <u>32</u>, 237 (1962).
- 5. C. E. Griffin and W. M. Daniewski, <u>J. Org. Chem.</u>, <u>35</u>, 1691 (1970).
- 6. S. D. Darling and N. Subramanian, J. Org. Chem., 40, 2851 (1975).
- 7. G. Büchi and M. Pawlak, J. Org. Chem., 40, 100 (1975).
- 8. P. L. Fuchs, Tetrahedron Lett., 4055 (1974).
- H. O. House, L. J. Czuba, M. Gall, and H. D. Olmstead, <u>J. Org. Chem.</u>, <u>34</u>, 2324 (1969).
- 10. I. Kuwajima and E. Nakamura, <u>J. Amer. Chem. Soc</u>., <u>97</u>, 3257 (1975).
- 11. W. S. Wadsworth and W. D. Emmons, <u>J. Amer. Chem. Soc.</u>, <u>83</u>, 1733 (1961).
- 12. S. Patai and A. Schwartz, <u>J. Org. Chem.</u>, 25, 1232 (1960).

(Received in USA 6 April 1979)